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Abstract. We perform a systematic WKB expansion to all orders for a one-dimensional system
with potentialV (x) = U0/ cos2 (αx). We are able to sum the series to the exact energy spectrum.
Then we show that at any finite order the error of the WKB approximation measured inthe
natural units of the mean energy level spacingdoes not go to zero when the quantum number
goes to infinity. Therefore we make the general conclusion that the semiclassical approximations
fail to predict the individual energy levels within a vanishing fraction of the mean energy level
spacing.

1. Introduction

In recent years many studies have been devoted to the transition from classical mechanics
to quantum mechanics. These studies are motivated by the so-called quantum chaos (see
Ozorio de Almeida 1990, Gutzwiller 1990, Casati and Chirikov 1995). An important aspect
is the semiclassical quantization formula of the energy levels for integrable and quasi-
integrable systems, i.e. the torus quantization initiated by Einstein (1917) and completed by
Maslov (1972, 1981). As is well known, the torus quantization is just the first term of a
certainh̄-expansion, the so-called WKB expansion, whose higher terms can be calculated
with a recursion formula at least for one degree systems (Dunham 1932, Benderet al 1977,
Voros 1983).

Recently it was observed by Prosen and Robnik (1993) and also Graffiet al (1994) that
the leading-order semiclassical approximation fails to predict the individual energy levels
within a vanishing fraction of the mean energy level spacing. This result has been shown
to be true also for the leading (torus) semiclassical approximation by Salasnich and Robnik
(1996).

In this paper we analyse a simple one-dimensional system for which we are able to
perform a systematic WKB expansion to all orders resulting in a convergent series whose
sum is identical to the exact spectrum. For this system we show that any finite order WKB
(semiclassical) approximation fails to predict the individual energy levels within a vanishing
fraction of the mean energy level spacing.
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2. The system and the WKB expansion method

The Hamiltonian of the system is given by

H = p2

2m
+ V (x) (1)

where

V (x) = U0

cos2 (αx)
. (2)

Of course, the Hamiltonian is a constant of motion, whose value is equal to the total
energyE. To perform the torus quantization it is necessary to introduce the action variable

I = 1

2π

∮
p dx =

√
2m

α
(
√
E −

√
U0) . (3)

The Hamiltonian as a function of the action reads

H = α2

2m
I 2+ 2α

√
U0

2m
I + U0 (4)

and after torus quantization

I = (ν + 1
2)h̄ (5)

whereν = 0, 1, 2, . . . , the energy spectrum is given by

Etor
ν = A

[(
ν + 1

2

)
+ 1

2
B

]2

(6)

whereA = α2h̄2/(2m) andB = √8mU0/(αh̄).
The Schr̈odinger equation of the system[

− h̄2

2m

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x) (7)

can be solved analytically (as shown in Landau and Lifshitz 1973, Flügge 1971) and the
exact energy spectrum is

Eex
ν = A

[(
ν + 1

2

)
+ 1

2

√
1+ B2

]2

(8)

whereν = 0, 1, 2, . . . . We see that the torus quantization does not give the correct energy
spectrum, but it is well known that the torus quantization is just the first term of the
WKB expansion. To calculate all the terms of the WKB expansion we observe that the
wavefunction can always be written as

ψ(x) = exp

(
i

h̄
σ (x)

)
(9)

where the phaseσ(x) is a complex function that satisfies the differential equation

σ ′2(x)+
(
h̄

i

)
σ ′′(x) = 2m(E − V (x)) . (10)

The WKB expansion for the phase is given by

σ(x) =
∞∑
k=0

(
h̄

i

)k
σk(x) . (11)



WKB to all orders 1713

Substituting equation (11) in (10) and comparing like powers of ¯h gives the recursion
relation (n > 0)

σ ′0
2 = 2m(E − V (x))

n∑
k=0

σ ′kσ
′
n−k + σ ′′n−1 = 0 . (12)

The quantization condition is obtained by requiring that the wavefunction be single-
valued: ∮

dσ =
∞∑
k=0

(
h̄

i

)k ∮
dσk = 2πh̄ ν (13)

whereν = 0, 1, 2, . . . is the quantum number.
The zeroth-order term, which gives the Bohr–Sommerfeld formula, is given by∮

dσ0 = 2
∫

dx
√

2m(E − V (x)) = 2πh̄

(√
E

A
− 1

2
B

)
(14)

and the first odd term in the series gives the Maslov corrections (the Maslov index is equal
to 2) (

h̄

i

)∮
dσ1 =

(
h̄

i

)
1

4
lnp

∣∣∣∣
contour

= −πh̄ . (15)

The zeroth-and first-order terms give equation (6), which is the torus quantization formula
for the energy levels (Bohr–Sommerfeld–Maslov). Here we want to analyse the quantum
corrections to this formula. We observe that all the other odd terms vanish when integrated
along the closed contour because they are exact differentials (Bender, Olaussen and Wang
1977). So the quantization condition (13) can be written as

∞∑
k=0

(
h̄

i

)2k ∮
dσ2k = 2πh̄(ν + 1

2) (16)

thus again being a sum over even-numbered terms only. The next two non-zero terms
(Narimanov 1995, Benderet al 1977, Robnik and Salasnich 1996) are(
h̄

i

)2 ∮
dσ2 = − h̄2

√
2m

1

12

∂2

∂E2

∫
dx

V ′2(x)√
E − V (x) (17)

(
h̄

i

)4 ∮
dσ4 = h̄4

(2m)3/2

[
1

120

∂3

∂E3

∫
dx

V ′′2(x)√
E − V (x) −

1

288

∂4

∂E4

∫
dx

V ′2(x)V ′′(x)√
E − V (x)

]
.

(18)

A straightforward calculation of these terms gives (see the appendix)(
h̄

i

)2 ∮
dσ2 = −2πh̄

4B
(19)

and (
h̄

i

)4 ∮
dσ4 = 2πh̄

16B3
. (20)

Up to fourth order in ¯h ∼ B−1 the quantization condition reads

E(4)ν = A
[(
ν + 1

2

)
+ 1

2
B + 1

4B
− 1

16B3

]2

. (21)
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The first two terms on the right-hand side give the torus quantization formula, and the other
two terms are quantum corrections. Higher-order quantum corrections quickly increase in
complexity but in this specific case they can be calculated. We first verify by induction,
following Benderet al (1977), that the solution to (12) has the general form

σ ′n(x) = (σ ′0)1−3nPn(cos(αx)) sinf (n) (αx) (22)

wheref (n) = 0 for n even andf (n) = 1 for n odd, andPn is a polynomial given by

Pn(cos(αx)) =
g(n)∑
l=0

Cn,l cos2l−3n (αx) (23)

with g(n) = (3n− 2)/2 for n even andg(n) = (3n− 3)/2 for n odd.
The integrals in (16) are performed by substitutingz = tan(αx). In this way the 2k-term

reduces to(
h̄

i

)2k ∮
dσ2k =

(
h̄

i

)2k
(2m)1/2−3k

α

3k−1∑
l=0

C2k,l

∮
dz

(1+ z2)3k−l−1

(E − U0− U0z2)3k−1/2
. (24)

We observe that∮
dz

(1+ z2)3k−l−1

(E − U0− U0z2)3k−1/2

= (−1)3k−1 0( 1
2)

0(3k − 1
2)

∂3k−1

∂E3k−1

∮
dz

(1+ z2)3k−l−1

(E − U0− U0z2)1/2
(25)

so the only non-zero term is forl = 0:

∂3k−1

∂E3k−1

∮
dz

(1+ z2)3k−1

(E − U0− U0z2)1/2
= 26k−1

U
1/2
0

0(3k − 1/2)2

0(6k − 1)

∂3k−1

∂E3k−1
β3k−1

= 26k−1

U
1/2
0

0(3k − 1/2)2

0(6k − 1)
0(3k)

1

U
3k−1/2
0

2π (26)

whereβ = (E − U0)/U0. At this stage we obtain(
h̄

i

)2k ∮
dσ2k = (−1)5k−1h̄2k (2m)

1/2−3k

α
C2k,0

1

U
3k−1/2
0

2π . (27)

Now we need to find the coefficientC2k,0 explicitly. By inserting (22) with (23) in the
recursion relation (12) we obtain
n∑
k=0

Ck,0Cn−k,0− (2mU0α)Cn−1,0 =
n−1∑
k=1

Ck,0Cn−k,0+ 2Cn,0− (2mU0α)Cn−1,0 = 0 (28)

from which we have

Ck,0 = 1

2

[
(2mαU0)Ck−1,0−

k−1∑
j=1

Cj,0Ck−j,0

]
C0,0 = 1 . (29)

From this equation one shows thatC1,0 = mαU0. Furthermore, it easy to show that all
higher odd coefficients vanish:C2k+3,0 = 0 for k = 0, 1, 2, . . . . The solution of this
equation for the remaining non-zero even coefficients is given by

C2k,0 = (−1)k(2mU0α)
2k2−2k

( 1
2

k

)
(30)
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which can be verified by direct substitution in equation (29), resulting in an identity for
half-integer binomial coefficients. Then the integral (27) can be written as(
h̄

i

)2k ∮
dσ2k = (−1)h̄2k2πα2k−1(2m)1/2−k2−2k

( 1
2

k

)
U
k−1/2
0 = −1

2

( 1
2

k

)
2πh̄

B2k−1
. (31)

In conclusion, the WKB quantization to all orders (16) is

E(∞)ν = A
[(
ν + 1

2

)
+ 1

2

∞∑
k=0

( 1
2

k

)
1

B2k−1

]2

. (32)

Because
∑∞

k=0

( 1
2
k

)
B1−2k = √1+ B2 we haveEex

ν = E(∞)ν , i.e. the WKB series converges
to the exact result (8).

Now we can calculate the error in units of the mean level spacing1Eν = Eex
ν+1 − Eex

ν

between the exact levelEex
ν and its WKB approximationE(N)ν to N th order:

Eex
ν − E(N)ν

1Eν
= 1

2

∞∑
k=N+1

( 1
2

k

)
1

B2k−1
for ν →∞ . (33)

The limit clearly shows that even for arbitrarily small but finite ¯h (1� B <∞), the relative
error for any finite WKB approximation becomes constant on increasingν, and scales as

Eex
ν − E(N)ν

1Eν
∼ 1

2

( 1
2

N + 1

)
1

B2N+1
B →∞ . (34)

Note that the limitB →∞ is equivalent to the limit ¯h→ 0.

3. Conclusions and discussion

For our present system we can conclude that to any finite order semiclassical approximation
the error measured in units of the mean level spacing remains constant even if the quantum
number increases indefinitely, contrary to the naive expectation, even if ¯h is small but fixed
and non-zero. This confirms the general statements made by Prosen and Robnik (1993). We
have thus provided a clear demonstration that the semiclassical methods cannot predict the
individual energy levels (and also their wavefunctions) within a vanishing fraction of the
mean energy level spacing in the limit when the quantum number goes to infinity,ν →∞,
but h̄ is small and fixed. Therefore we cannot expect the semiclassics at any non-zero value
of h̄ to correctly describe the fine structure of energy spectra manifested in the short-range
statistics like the energy level repulsion, which was predicted to be a purely quantum effect
(Robnik 1986), later reconfirmed by Berry (1991). On the other hand, Prosen and Robnik
(1993) have shown that the long-range statistics of the energy spectra are very well captured
even by the lowest-order semiclassical approximation. This is of course compatible with
the very important semiclassical theory of delta statistics1(L) (spectral rigidity) by Berry
(1985), employing the Gutzwiller periodic orbit theory (Gutzwiller 1990), where agreement
with predictions of random matrix theories and with the experimental and numerical data
has been obtained at largeL. Also, Berry and Tabor (1977) have used torus quantization
of integrable systems (with more than one degree of freedom), predicting the Poissonian
(exponential) energy level spacing distribution. Our results show that their result cannot
be rigorous, especially since we know some counterexamples of integrable systems with
non-Poissonian statistics (Bleheret al 1993), and also know that their approximation does
not take into account the non-perturbative tunnelling effects, but it is nevertheless a good
heuristic argument explaining whytypically we do observe Poissonian statistics in classically
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integrable systems. By typically we mean that the set of exceptions has a small or even
vanishing measure.

We should emphasize again that the error of the torus quantization (which Berry and
Tabor (1977) have used) and of the Gutzwiller trace formula (which obviously has generally
the same quality as EBK quantization of classically integrable systems) scales as∝ h̄2, in
the limit of fixed quantum numbers but ¯h→ 0. (This is the actual semiclassical limit in the
strong sense.) In systems withf degrees of freedom the mean energy level spacing1E

scales as ¯hf (due to the asymptotically exact Thomas–Fermi rule). Therefore, the error of
the leading semiclassical approximation (EBK, Gutzwiller) measured in units of1E scales
as h̄(2−f ). Thus it goes to zero only in systems with one degree of freedom (f = 1), it is
constant for two degrees of freedom (f = 2), and can even diverge for higher degrees of
freedom (f > 3). Thus to improve the theoretical results we need higher corrections to the
leading semiclassical terms. However, one should not forget that in order to explain quantal
resultsh̄ must be non-zero and fixed, however small, in which case the fine structure of
energy spectra at scales smaller than certain characteristic range (a power of ¯h) cannot be
correctly described.

The conclusion of this paper is that the semiclassical methods are just not good enough
(at any order) to describe the fine structure of energy spectra and wavefunctions. Our
approach leading to the above conclusion rests upon a systematic WKB expansion for the
potentialV (x) = U0/ cos2 (αx) using the technique of Benderet al (1977). We are able
to calculate all orders, the series is convergent and can be summed precisely to the exact
result.
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Appendix

In this appendix we show how to obtain equations (19) and (20). In all integrals of this
section the limits of integration are between the two turning points. After the substitution
z = tan(αx), we have∫

dx
V ′2(x)√
E − V (x) =

4αU2
0√

U0

∫ √β
−√β

dz
z2(z2+ 1)√
β − z2

= 4αU2
0√

U0
(3β2+ 4β)

π

8
(A1)

whereβ = (E − U0)/U0. In conclusion we have(
h̄

i

)2 ∮
dσ2 = − h̄2απ

8
√

2mU0
= −2πh̄

4B
(A2)

with B = √8mU0/(αh̄).
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To obtain equation (21) we proceed in the same way:∫
dx

V ′′2(x)√
E − V (x) =

4α3U2
0√

U0

∫ √β
−√β

dz
(9z4+ 6z2+ 1)(z2+ 1)√

β − z2

= 4αU2
0√

U0
(45β3+ 90β2+ 56β + 16)

π

16
(A3)

from which we obtain

∂3

∂E3

∫
dx

V ′′2(x)√
E − V (x) =

135πα3
√
U0

2U2
0

. (A4)

For the last integral we have∫
dx

V ′2(x)V ′′(x)√
E − V (x) =

8α3U2
0√

U0

∫ √β
−√β

dz
z2(3z2+ 1)(z2+ 1)2√

β − z2

= 8αU2
0√

U0
(105β4+ 280β3+ 240β2+ 60β)

π

128
(A5)

from which we obtain

∂4

∂E4

∫
dx

V ′2(x)V ′′(x)√
E − V (x) =

315πα3
√
U0

2U2
0

. (A6)

In conclusion we have(
h̄

i

)4 ∮
dσ4 = h̄4

(2m)3/2
α3
√
U0

U2
0

[
1

120

135

2
− 1

288

315

2

]

= h̄4α3π
√
U0

64(2m)3/2U2
0

= 2πh̄

16B3
. (A7)
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